欧美色在线视频播放 视频,国产精品亚洲精品日韩已方,日本特级婬片中文免费看,亚洲 另类 在线 欧美 制服

<td id="8pdsg"><strong id="8pdsg"></strong></td>
<mark id="8pdsg"><menu id="8pdsg"><acronym id="8pdsg"></acronym></menu></mark>
<noscript id="8pdsg"><progress id="8pdsg"></progress></noscript>

    首頁(yè) >> 創(chuàng)投 >

    二次函數(shù)的圖像和性質(zhì)教案(二次函數(shù)的圖像和性質(zhì))

    2024-08-12 03:01:48 來(lái)源: 用戶: 

    哈嘍,小天來(lái)為大家解答以下的問(wèn)題,關(guān)于二次函數(shù)的圖像和性質(zhì)教案,二次函數(shù)的圖像和性質(zhì)這個(gè)很多人還不知道,那么現(xiàn)在讓我?guī)е蠹乙黄饋?lái)看看吧!

    二次函數(shù) 二次函數(shù) I.定義與定義表達(dá)式 一般地,自變量x和因變量y之間存在如下關(guān)系: y=ax^2+bx+c(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.) 則稱y為x的二次函數(shù)。

    二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

    II.二次函數(shù)的三種表達(dá)式 一般式:y=ax^2;+bx+c(a,b,c為常數(shù),a≠0) 頂點(diǎn)式:y=a(x-h)^2;+k [拋物線的頂點(diǎn)P(h,k)] 交點(diǎn)式:y=a(x-x1)(x-x2) [僅限于與x軸有交點(diǎn)A(x1,0)和 B(x2,0)的拋物線] 注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系: h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a III.二次函數(shù)的圖像 在平面直角坐標(biāo)系中作出二次函數(shù)y=x2的圖像, 可以看出,二次函數(shù)的圖像是一條拋物線。

    IV.拋物線的性質(zhì) 1.拋物線是軸對(duì)稱圖形。

    對(duì)稱軸為直線 x = -b/2a。

    對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。

    特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0) 2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為 P [ -b/2a ,(4ac-b^2;)/4a ]。

    當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ= b^2-4ac=0時(shí),P在x軸上。

    3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

    當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。

    |a|越大,則拋物線的開(kāi)口越小。

    4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

    當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左; 當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

    5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

    拋物線與y軸交于(0,c) 6.拋物線與x軸交點(diǎn)個(gè)數(shù) Δ= b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

    Δ= b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

    Δ= b^2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。

    X的取值是虛數(shù)(X=-b加減 根號(hào)內(nèi)B2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除2a V.二次函數(shù)與一元二次方程 特別地,二次函數(shù)(以下稱函數(shù))y=ax^2;+bx+c, 當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程), 即ax^2;+bx+c=0 此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。

    函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

    你復(fù)數(shù)還沒(méi)學(xué)吧,象涉及到虛數(shù)的就不用看了。

    本文分享完畢,希望對(duì)大家有所幫助。

      免責(zé)聲明:本文由用戶上傳,與本網(wǎng)站立場(chǎng)無(wú)關(guān)。財(cái)經(jīng)信息僅供讀者參考,并不構(gòu)成投資建議。投資者據(jù)此操作,風(fēng)險(xiǎn)自擔(dān)。 如有侵權(quán)請(qǐng)聯(lián)系刪除!

     
    分享:
    最新文章
    站長(zhǎng)推薦